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Wronskian-type solutions for the vector k-constrained KP
hierarchy

You-jin Zhang†‡
Math group, International Centre for Theoretical Physics, PO Box 586, 34100 Trieste, Italy

Received 28 September 1995

Abstract. Motivated by a relation of the 1-constrained Kadomtsev–Petviashvili (KP) hierarchy
with the 2-component KP hierarchy, the tau-functions of the vectork-constrained KP hierarchy
are constructed by using an analogue of the Baker–Akhiezer(m + 1)-point function. These
tau-functions are expressed in terms of Wronskian-type determinants.

1. Introduction

In recent years, a series of papers have been devoted to the study of a class of integrable
systems which are constrained from the Kadomtsev–Petviashvili (KP) hierarchy [1–6]; as
in [5] we call this class of integrable systems thevector k-constrained KP hierarchy.
For arbitrary given positive integersk,m, the vectork-constrained KP hierarchy can be
expressed as [3–5]

Lktn = [Bn,L
k] (1.1a)

qi,tn = Bnqi (1.1b)

ri,tn = −B∗
nri (1.1c)

i = 1, 2, . . . , m n > 2 (1.1d)

where the micro-differential operatorL is defined as

L = ∂ + u2∂
−1 + u3∂

−2 + · · · (1.2)

which satisfies the following condition

Lk = Bk +
m∑
i=1

qi∂
−1ri (1.3)

ui ’s, qi ’s and ri ’s are functions of the variablet = (t1, t2, . . .), ∂ = ∂/∂x with x = t1, Bn
is the differential part of the micro-differential operatorLn,B∗

n is the operator adjoints to
Bn and∂−1ri is defined as

∂−1ri = ri∂
−1 − ri,x∂

−2 + ri,xx∂
−3 − · · · . (1.4)

The hierarchy of equations in (1.1) can be represented in terms of the dynamical variables
u2, u3, . . . , uk andqi, ri(i = 1, 2, . . . , m). Whenm = 1, we call the hierarchy of equations
in (1.1) thek-constrained KP hierarchy. These integrable systems are proved to possess
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the Lax pair representations, the bi-Hamiltonian structures and the bilinear representations
[3–5, 7], and they are also equivalent to some integrable systems which are closely related
to the study ofW -algebras, multi-matrix models [8–11] and topological field theory [12].

In [5] we studied the solutions of the vectork-constrained KP hierarchy (1.1) by
employing the bilinear method, we showed how to obtain their rational and soliton-like
solutions starting from the solutions of the KP hierarchy; these rational and soliton-like
solutions can be expressed by vertex operators. In [13], we studied the Wronskian structure
of the solutions of thek-constrained KP hierarchy, we proved that the Yajima–Oikawa
equation which is the first flow in the 2-constrained KP hierarchy has solutions in generalized
double Wronskian form, then based on this and some other facts we conjectured that the
generalk-constrained KP hierarchy also possess solutions in generalized double Wronskian
form, and we also conjectured the form of these solutions.

The purpose of the present paper is to construct the Wronskian-type solutions for the
vector k-constrained KP hierarchy (1.1), and as an aside to prove our conjecture given
in [13]. We shall employ the method presented in [14], where soliton-like solutions for
some integrable systems were constructed; these integrable systems are equivalent to the
first flows of the vectork-constrained KP hierarchy (1.1) withk = 1–4. This method
arises from the algebraic-geometric method in soliton theory [15, 16]; it starts from the
construction of an analogue of the Baker–Akhiezer function for the KP hierarchy (the Baker–
Akhiezer 1-point function) by solving certain algebraic linear system and then imposes on the
constructed function some self-consistency conditions to obtain the solutions for the relevant
integrable systems. To construct the Wronskian-type solutions for the vectork-constrained
KP hierarchy (1.1), we shall start from the construction of an analogue of the Baker–
Akhiezer (m + 1)-point function instead of starting from the construction of the analogue
of the Baker–Akhiezer 1-point function. The advantage of our construction lies in the fact
that we can obtain solutions of the whole hierarchy (1.1) in a straightforward way and can
express these solutions in a simple form by using some Wronskian-type determinants. The
motivation of our construction comes from the relation of the 1-constrained KP hierarchy
(i.e. the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy, see [3]) with the 2-component
KP hierarchy. This relation enables us to construct the solutions of the 1-constrained
KP hierarchy from the solutions of the 2-component KP hierarchy in a much more
straightforward way than to construct the solutions of the 1-constrained KP hierarchy by
imposing some constraints on solutions of the KP hierarchy, as was done in [5, 14].

In section 2 we explain our motivation by the construction of the double Wronskian
solutions for the first flow of the 1-constrained KP hierarchy, in section 3 we construct
the solutions for the vectork-constrained KP hierarchy (1.1), in section 4 we construct the
tau-functions of the hierarchy (1.1) and show that they can be expressed in Wronskian-type
determinants and in section 5 we give some concluding remarks.

2. Double Wronskian solutions for the first flow of the 1-constrained KP hierarchy as
a motivation

In this section, we construct the double Wronskian solutions of the first flow of the
1-constrained KP hierarchy by using its relation with the 2-component KP hierarchy, and
thus give a hint of the construction of the Wronskian-type solutions for the general vector
k-constrained KP hierarchy. For the convenience of our further construction of Wronskian-
type solutions we will state this well known relation [17, 18] in the language of the method
given in [14].
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Let us assume that the functionsψ(i)

1 (x, y, λ), ψ
(i)

2 (x, y, ζ ) have the following forms:

ψ
(i)

1 (x, y, λ) =
(
δi1 +

M∑
j=1

u
(i)

1j (x, y)λ
−j

)
ex1λ+y1λ

2
(2.1a)

ψ
(i)

2 (x, y, ζ ) =
(
δi2 +

N∑
j=1

u
(i)

2j (x, y)ζ
−j

)
ex2ζ+y2ζ

2
(2.1b)

where x = (x1, x2), y = (y1, y2), δ
i
j is the Kronecker-delta function andλ, ζ are two

parameters, andi = 1, 2. These functions give rise an analogue of the Baker–Akhiezer
2-point function [15, 16]. To specify the coefficientsu(i)lj ’s, let us impose the following

linear conditions on the functionsψ(i)
j :

alψ
(i)

1 (x, y, λl)+ blψ
(i)

2 (x, y, ζl) = 0 (2.2)

l = 1, 2, . . . ,M +N i = 1, 2

whereal, bl, λl, ζl are some given constants. Let us define

U(i) = (u
(i)

11, . . . , u
(i)

1M, u
(i)

21, . . . , u
(i)

2N)
T (2.3)

and rewrite the linear conditions in (2,2) as

AU(i) = F(i) i = 1, 2 (2.4)

where A and F(i)’s are (M + N) × (M + N) and (M + N) × 1 matrices, respectively.
We assume that the matrixA is not identically degenerate; since the determinant ofA is a
smooth function ofx, y, we can assume in what follows thatA is non-degenerate in some
open domain and(x, y) belongs to this domain.

Lemma 2.1. Denoteu(i)11 = ri1, u
(i)

21 = ri2, then the functionsψ(i)

1 , ψ
(i)

2 satisfy the following
system of linear equations:

ψ
(1)
j,x2

= r12ψ
(2)
j (2.5a)

ψ
(2)
j,x1

= r21ψ
(1)
j (2.5b)

ψ
(1)
j,y1

= ψ
(1)
j,x1x1

− 2r11,x1ψ
(1)
j (2.6a)

ψ
(1)
j,y2

= ψ
(1)
j,x2x2

− 2r12,x2ψ
(2)
j (2.6b)

ψ
(2)
j,y1

= ψ
(2)
j,x1x1

− 2r21,x1ψ
(1)
j (2.6c)

ψ
(2)
j,y2

= ψ
(2)
j,x2x2

− 2r22,x2ψ
(2)
j . (2.6d)

Proof. From the form of ψ(i)
j we see thatφj := ψ

(1)
j,x2

− r12ψ
(2)
j has the form

(
∑M
j=1 v1j (x, y)λ

−j )ex1λ+x2λ
2

for j = 1 and has the form(
∑N
j=1 v2j (x, y)λ

−j )ey1ζ+y2ζ
2

for
j = 2, and from (2.2) we see thatφj ’s satisfy

alφ1(x, y, λl)+ blφ2(x, y, ζl) = 0 1 6 l 6 M +N. (2.7)

If we define

V = (v11, . . . , v1M, v21, . . . , v2N)
T (2.8)

then conditions in (2.7) can be written as

AV = 0 (2.9)

and thus from the non-degeneracy ofA we obtain thatφj = 0, which proves the identity
(2.5a); the identities (2.5b) and (2.6a)–(2.6d) can be proved similarly. The lemma is
proved. �
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From the equalitiesψ(2)
2,x1

= r21ψ
(1)
2 , ψ

(1)
1,x2

= r12ψ
(2)
1 and the form ofψ(i)

j ’s we can
easily see thatr22,x1 = r11,x2 = r12r21. This fact and the compatibility conditions of the
linear equations in (2.5) and (2.6) lead to

Theorem 2.1. The functionsrij satisfy the following system of equations

r12,y1 = r12,x1x1 − 2r12r11,x1 (2.10a)

r12,y2 = −r12,x2x2 + 2r12r22,x2 (2.10b)

r21,y1 = −r21,x1x1 + 2r21r11,x1 (2.10c)

r21,y2 = r21,x2x2 − 2r21r22,x2 (2.10d)

r11,x2 = r12r21 (2.10e)

r22,x1 = r12r21. (2.10f)

The equations in (2.10) are the simpliest non-trivial flows of the 2-component KP hierarchy
[17, 18]. If we introduce the following new variables:

t1 = x1 − x2 t̃1 = x1 + x2 t2 = y1 − y2 t̃2 = y1 + y2. (2.11)

Then the equations in (2.10) lead to the Davey–Stewartson system [17], and if we require
that rij ’s are independent of̃ti(i = 1, 2), then the equations in (2.10) lead to

∂t2r12 = ∂2
t1
r12 + 2(r12r21)r12 (2.12a)

∂t2r21 = −∂2
t1
r21 − 2(r12r21)r21 (2.12b)

which is the first non-trivial flow in the 1-constrained KP hierarchy [3].

Lemma 2.2. Let us assumeλl = ζl for 1 6 l 6 M + N in (2.2), thenrij ’s constructed
from (2.1)–(2.4) are independent oft̃1 and t̃2.

Proof. Sinceλl = ζl , we can eliminate the factor e
1
2 t̃1λl+ 1

2 t̃2λ
2
l from the linear systems in

(2.2), and obtain linear systems which do not depend ont̃1 and t̃2. Thus therij ’s which are
constructed from (2.1)–(2.4) are independent oft̃1 and t̃2. We have proved the lemma.�

Let us now define the following two vectors,

ϕ = (a1λ
−M
1 e

1
2 t1λ1+ 1

2 t2λ
2
1, . . . , aM+Nλ−M

M+Ne
1
2 t1λM+N+ 1

2 t2λ
2
M+N )T (2.13a)

φ = (b1λ
−N
1 e− 1

2 t1λ1− 1
2 t2λ

2
1, . . . , bM+Nλ−N

M+Ne− 1
2 t1λM+N− 1

2 t2λ
2
M+N )T (2.13b)

and we also denotes = 1
2t1, then from lemma 2.2 and the linear conditions in (2.2) we have

Theorem 2.2. The system of equations in (2.12) has the following double Wronskian
solution [19, 20]:

r12 = ρ

τ
r21 = σ

τ
(2.14)

where

ρ = −det(ϕ, ∂sϕ, . . . , ∂
M
s ϕ, φ, ∂sφ, . . . , ∂

N−2
s φ) (2.15a)

σ = −det(ϕ, ∂sϕ, . . . , ∂
M−2
s ϕ, φ, ∂sφ, . . . , ∂

N
s φ) (2.15b)

τ = det(ϕ, ∂sϕ, . . . , ∂
M−1
s ϕ, φ, ∂sφ, . . . , ∂

N−1
s φ). (2.15c)
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Remark 2.1. Under the conditionλl = ζl(1 6 l 6 M + N), we know that the functions
ψ
(i)
j (x, y, λ)e

−x2λ−y2λ
2
, i, j = 1, 2, do not depend oñt1 and t̃2, so we can denote them as

ϕ
(i)
j (t, λ), wheret = (t1, t2). Then instead of condition (2.2) we have

alϕ
(i)

1 (t, λl)+ blϕ
(i)

2 (t, λl) = 0 i = 1, 2, 1 6 l 6 M +N. (2.16)

We also define

τ̃ (t) = c(t)τ (t) ρ̃(t) = c(t)ρ(t) σ̃ (t) = c(t)σ (t) (2.17)

where c(t) = exp[(t1/2)
∑M+N

l=1 λl + (t2/2)
∑M+N

l=1 λ2
l ]. Then the functionsϕ(i)j (t, λ),

τ̃ (t), ρ̃(t) and σ̃ (t) can be written as functions of et1λl+t2λ
2
l , 1 6 l 6 M + N . We

now replace the term et1λl+t2λ
2
l in these functions by the term exp[

∑∞
n=1 tnλ

n
l ] and denote

t = (t1, t2, . . . , tn, . . .). Then we can expressϕ(i)1 in the following form (see theorem 4.1,
later):

ϕ
(1)
1 (t, λ) = τ̃ (t − ε(λ))

τ̃ (t)
exp

[ ∞∑
n=1

tnλ
n

]
ϕ
(2)
1 (t, λ) = σ̃ (t − ε(λ))

λτ̃ (t)
exp

[ ∞∑
n=1

tnλ
n

]
(2.18)

whereε(λ) = (1/λ, 1/2λ2, 1/3λ3, . . .). The above formulae show us thatϕ(i)1 (t, λ), i = 1, 2,
are the wavefunctions of the 1-constrained KP hierarchy defined in [5]; this fact gives us
a motivation for our further construction of the Wronskian-type solutions of the vector
k-constrained KP hierarchy.

3. Solutions for the vectork-constrained KP hierarchy (1.1)

Let us define the following functions:

ϕ
(i)

1 (t, λ) =
(
δi1 +

M1∑
ν=1

u
(i)

1ν (t)λ
−ν

)
eξ(t,λ) (3.1a)

ϕ
(i)
j (t, λ) = δij +

Mj∑
ν=1

u
(i)
jν (t)λ

−kν (3.1b)

2 6 j 6 m+ 1 1 6 i 6 m+ 1

where Mj, 1 6 j 6 m + 1 are some positive integers,λ is a parameter,t =
(t1, t2, . . . , tn, . . .), and

ξ(t, λ) =
∞∑
l=1

tlλ
l. (3.2)

We specify the coefficientsu(i)jν ’s by imposing the following linear conditions onϕ(i)j :

m+1∑
ν=1

alνϕ
(i)
ν (t, λl) = 0 1 6 l 6 M, 1 6 i 6 m+ 1 (3.3)

whereM = ∑m+1
µ=1 Mµ andalν ’s are some given constants. If we denote

U(i) = (u
(i)

11, . . . , u
(i)

1M1
, u

(i)

21, . . . , u
(i)

2M2
, . . . , u

(i)

(m+1)1, . . . , u
(i)

(m+1)M(m+1)
)T (3.4)

then the linear conditions in (3.3) can be written as

AU(i) = F(i) (3.5)
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where A and F(i)’s areM × M andM × 1 matrices, respectively. As in section 2 we
assume in what follows that the matrixA is non-degenerate in a certain open domain and
we assume thatt belongs to this domain, then the linear systems of equations in (3.5)
uniquely determine the functionsϕ(i)j ’s, which give an analogue of the Baker–Akhiezer
(m+ 1)-point function (see remark 2.1).

We define now the following operators:

P = 1 +
M1∑
ν=1

u
(1)
1ν (t)∂

−ν (3.6a)

L = P∂P−1 (3.6b)

where∂ = ∂/∂t1. Let us also denote

qi(t) = u
(1)
(i+1)1 ri(t) = u

(i+1)
11 1 6 i 6 m. (3.7)

Then we have

Lemma 3.1. The functionsϕ(i)j ’s defined by (3.1)–(3.5) satisfy the following system of
linear equations:

Bkϕ
(1)
j +

m∑
µ=1

qµϕ
(µ+1)
j = λkϕ

(1)
j (3.8a)

ϕ
(ν+1)
j,t1

= rνϕ
(1)
j (3.8b)

ϕ
(1)
j,tn

= Bnϕ
(1)
j (3.8c)

ϕ
(ν+1)
j,tn

= A(ν)n ϕ
(1)
j (3.8d)

1 6 ν 6 m n > 2

whereBn = (Ln)+ is the differential part of the micro-differential operatorLn, A(ν)n is a
(n− 1)th order differential operator which has the form

A(ν)n =
n−1∑
l=0

f
(ν)
nl ∂

l (3.9)

and is uniquely defined by the following relations:

∂A(ν)n = rνBn − (B∗
nrν) n > 2 (3.10)

hereB∗
n is the operator adjoints toBn.

Proof. Let us denote

8j = Bkϕ
(1)
j (t, λ)− λkϕ

(1)
j (t, λ)+

m∑
µ=1

qµϕ
(µ+1)
j (t, λ). (3.11)

From the definition ofϕ(1)1 (t, λ) andP we haveϕ(1)1 = Peξ(t,λ), so from (3.6b) we obtain

Lkϕ
(1)
1 = λkϕ

(1)
1 . (3.12)

By using (3.12) and (3.1) we see that81 has the form( M1∑
ν=1

w1ν(t)λ
−ν

)
eξ(t,λ). (3.13)
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On the other hand, from (3.1) we see that8j for 2 6 j 6 m+ 1 has the form

Mj∑
ν=1

wjνλ
−kν . (3.14)

The linear conditions in (3.3) lead to
m+1∑
ν=1

alν8ν(t, λl) = 0 1 6 l 6 M (3.15)

and this turns out to be a homogenous linear system for the unknownswlν ’s due to (3.13)
and (3.14). From the non-degeneracy of the coefficient matrixA, we obtain that8j = 0.

In a similar way, we can show that the equalities (3.8b) and (3.8c) hold and we can
show that there exist operatorsA(ν)n ’s of the form (3.9) such that (3.8d) holds. To specify
the operatorsA(ν)n ’s, we use the compatibility conditions of (3.8b) and (3.8d), which lead
to

∂A(ν)n = rνBn + rν,tn . (3.16)

We denoteBn by
∑n

µ=0 bµ∂
µ, then substitute (3.9) into the equality (3.16) so we obtain

f
(ν)

n(n−1) = rνbn f
(ν)
nl = rνbl+1 − ∂t1f

(ν)

n(l+1) 0 6 l 6 n− 2 (3.17a)

rν,tn = −B∗
nrν (3.17b)

thus we have proved the lemma. �
Relations in (3.8) coincide with the Lax representation of the vectork-constrained KP

hierarchy [5], from which we have the following theorem:

Theorem 3.1. The operatorL and the functionsqi(t), ri(t), 1 6 i 6 m, which are
constructed in this section from (3.1)–(3.7) gave a solution of the vectork-constrained
KP hierarchy (1.1).

Proof. From (3.8a)–(3.8c) and (3.12) we see thatL satisfies(1.1a) and (1.3), and (3.17b)
shows thatri(t) satisfies(1.1c). To prove thatqi ’s satisfy the equations in(1.1b), let us
take the derivative of both sides of(3.8a) with respect totn. By using(3.8c) we have

∂tn(Bkϕ
(1)
j )+

m∑
µ=1

qµ,tnϕ
(µ+1)
j +

m∑
µ=1

qµϕ
(µ+1)
j,tn

= λkBnϕ
(1)
j (3.18)

where we assume that 26 j 6 m + 1; then by using (3.1b) and equating the coefficients
of λ0 in both sides of (3.18) we obtainqj−1,tn = Bnqj−1, 2 6 j 6 m + 1. The theorem is
proved. �

In the next section, we show that the solutions of the vectork-constrained KP hierarchy
constructed in this section can be expressed in terms of tau-functions which are some
Wronskian-type determinants.

4. Wronskian-type tau-functions of the vectork-constrained KP hierarchy (1.1)

Let us keep in mind the notations of section 3, and define

φ1 = (a11λ
−M1
1 e

1
2 ξ(t,λ1), a21λ

−M1
2 e

1
2 ξ(t,λ2), . . . , aM1λ

−M1
M e

1
2 ξ(t,λM))T (4.1a)

φj = (a1jλ
−kMj

1 e− 1
2 ξ(t,λ1), a2jλ

−kMj

2 e− 1
2 ξ(t,λ2), . . . , aMjλ

−kMj

M e− 1
2 ξ(t,λM))T (4.1b)

2 6 j 6 m+ 1.
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We denotes = t1/2 as in section 2, and define the following two matrices:

R = (φ1, ∂sφ1, . . . , ∂
M1
s φ1, φ2, ∂

k
s φ2, . . . , ∂

k(M2−1)
s φ2, . . . , φm+1,

∂ks φm+1, . . . , ∂
k(Mm+1−1)
s φm+1) (4.2a)

Q = (φ1, ∂sφ1, . . . , ∂
M1−2
s φ1, φ2, ∂

k
s φ2, . . . , ∂

k(M2−1)
s φ2, . . . , φm+1,

∂ks φm+1, . . . , ∂
k(Mm+1−1)
s φm+1). (4.2b)

We also define

τ(t) = e
1
2

∑M
l=1 ξ(t,λl )det(R(n0 + 1)) (4.3a)

ρj (t) = (−1)nj−M1+k(Mj+1−1)e
1
2

∑M
l=1 ξ(t,λl )det(R(nj + 1)) (4.3b)

σj (t) = (−1)nj−M1+kMj+1+1e
1
2

∑M
l=1 ξ(t,λl )det(Q(nj − 1, ∂

kMj+1
s φj+1) (4.3c)

1 6 j 6 m ni =
i+1∑
l=1

Ml 0 6 i 6 m

whereR(nj + 1) is a matrix obtained from the matrixR by removing its(nj + 1)th column,

andQ(nj−1, ∂
kMj+1
s φj+1) is a matrix obtained fromQ by adding to the matrixQ the column

∂
kMj+1
s φj+1 behind its(nj − 1)th column∂

k(Mj+1−1)
s φj+1.

Theorem 4.1. The functionsqi(t), ri(t) for i = 1, 2, . . . , m andϕ(j)1 for j = 1, 2, . . . , m+1
have the following expression:

qi(t) = ρi(t)

τ (t)
ri(t) = σi(t)

τ (t)
(4.4)

ϕ
(1)
1 (t, λ) = τ(t − ε(λ))

τ (t)
eξ(t,λ) (4.5a)

ϕ
(j)

1 (t, λ) = σj−1(t − ε(λ))

λτ(t)
eξ(t,λ) (4.5b)

1 6 i 6 m 2 6 j 6 m+ 1

whereε(λ) = (1/λ, 1/2λ2, 3/λ3, . . .).

Proof. The relations in (4.4) are evident from (3.1)–(3.7) and the definitions given in
(4.1)–(4.3). The relations in (4.5) can be proved by using the fact that [18]

e
1
2 ξ(t,λl )∂js (al1λ

−M1
l e

1
2 ξ(t,λl ))− λ−1e

1
2 ξ(t,λl )∂j+1

s (al1λ
−M1
l e

1
2 ξ(t,λl ))

= e
1
2 ξ(t−ε(λ),λl )∂js (al1λ

−M1
l e

1
2 ξ(t−ε(λ),λl )). (4.6)

The theorem is proved. �
From (4.4), (4.5) and [5] we see thatτ(t), ρi(t), σi(t), i = 1, 2, . . . , m, satisfy the

bilinear equations of the vectork-constrained KP hierarchy given in [5], and thus they are
the tau-functions of the vectork-constrained KP hierarchy. From (4.5) we also see that the
operatorP defined in (3.6a) can be expressed by the functionτ(t) as follows:

P =
M1∑
ν=0

pν(−∂̃)τ (t)
τ (t)

∂−ν (4.7)

wherepν(t)’s are the Schur polynomials defined by

eξ(t,λ) =
∞∑
ν=0

pν(t)λ
ν (4.8)
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and ∂̃ = (∂t1,
1
2∂t2,

1
3∂t3, . . .). So the operatorL is also determined by the functionτ(t),

this fact together with (4.4) implies that the tau-functionsτ(t), ρi(t), σi(t), i = 1, 2, . . . , m,
characterize a solution of the vectork-constrained KP hierarchy (1.1).

Whenm = 1, the tau-functions have the following form:

τ(t) = c1(t)det(φ1, ∂sφ1, . . . , ∂
M1−1
s , φ2, ∂

k
s φ2, . . . , ∂

k(M2−1)
s φ2) (4.9a)

ρ1(t) = c2(t)det(φ1, ∂sφ1, . . . , ∂
M1
s φ1, φ2, ∂

k
s φ2, . . . , ∂

k(M2−2)
s φ2) (4.9b)

σ1(t) = c3(t)det(φ1, ∂sφ1, . . . , ∂
M1−2
s φ1, φ2, ∂

k
s φ2, . . . , ∂

kM2
s φ2) (4.9c)

wherec1(t) = exp[1
2

∑M
l=1 ξ(t, λl)], c2(t)= (−1)(k+1)M2−kc1(t), c3(t)= (−1)(k+1)M2+1c1(t).

From the bilinear equations of thek-constrained KP hierarchy [5] we see that ifτ(t)
andρ1(t) andσ1(t) are its tau-functions, then we can define another set of tau-functions for
the k-constrained KP hierarchy as follows:

τ̂ (t) = ε1τ(−t) ρ̂1(t) = ε2σ1(−t) σ̂1 = ε2ρ1(−t) (4.10)

whereεi = ±1. It is then not hard to see that the solution of thek-constrained KP hierarchy
obtained from the tau-functions in (4.9) is equivalent to the solution constructed from the
tau-functions which were given in the conjecture of [13], thus we also proved this conjecture.

5. Concluding remarks

The fact that the 1-constrained KP hierarchy can be reduced from the 2-component KP
hierarchy enables us to construct the double Wronskian solutions of the 1-constrained
KP hierarchy starting from an analogue of the Baker–Akhiezer 2-point functions. This
construction in turn motivated us to construct the Wronskian-type solutions of the vector
k-constrained KP hierarchy starting from an analogue of the Baker–Akhiezier(m+1)-point
function. We remark here that the reduction from the 2-component KP hierarchy to the
1-constrained KP hierarchy is much more straightforward than the reduction from the KP
hierarchy to the 1-constrained KP hierarchy; it only needs us to require that the dynamical
variables of the 2-component KP hierarchy do not depend on some independent variables,
which is similar to the reduction from the KP hierarchy to the Korteweg–de Vries (KdV)
hierarchy. We finally remark that our construction of the Wronskian-type solutions of the
vector k-constrained KP hierarchy suggests that there may exist a certain analogue of the
(2+ 1)-dimensional(m+ 1)-component KP hierarchy from which the vectork-constrained
KP hierarchy can be straightforwardly reduced, and it also suggests a relatively convenient
way to construct the algebraic–geometric solutions of the vectork-constrained KP hierarchy
by using a certain analogue of the Baker–Akhiezer(m+ 1)-point function. These subjects
will be discussed in further publications.
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