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Abstract. Motivated by a relation of the 1-constrained Kadomtsev—Petviashvili (KP) hierarchy
with the 2-component KP hierarchy, the tau-functions of the vectoonstrained KP hierarchy
are constructed by using an analogue of the Baker—Akhigzet 1)-point function. These
tau-functions are expressed in terms of Wronskian-type determinants.

1. Introduction

In recent years, a series of papers have been devoted to the study of a class of integrable
systems which are constrained from the Kadomtsev—Petviashvili (KP) hierarchy [1-6]; as
in [5] we call this class of integrable systems thector k-constrained KP hierarchy

For arbitrary given positive integeris m, the vectork-constrained KP hierarchy can be
expressed as [3-5]

L} =[B,, L"] (1.1a)

s, = Bugqi (1.1b)

Tig, = —B7i (1.1

i=12....m n>=2 (1.2d)
where the micro-differential operatdr is defined as

L=0+4u0"t+uszd2+-.. (1.2)

which satisfies the following condition
L*=Bi+) qid ' (1.3)
i=1
u;'s, ¢;'s andr;’s are functions of the variable= (#1, 12, ...), 3 = 9/9x with x = 1, B,

is the differential part of the micro-differential operatbt, B’ is the operator adjoints to
B, andd~1r; is defined as

Ol =0 = 0 i d S — (1.4)
The hierarchy of equations in (1.1) can be represented in terms of the dynamical variables
us, uz,...,ur andg;, r;(i =1,2,...,m). Whenm = 1, we call the hierarchy of equations

in (1.1) thek-constrained KP hierarchy These integrable systems are proved to possess
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the Lax pair representations, the bi-Hamiltonian structures and the bilinear representations
[3-5, 7], and they are also equivalent to some integrable systems which are closely related
to the study ofW-algebras, multi-matrix models [8-11] and topological field theory [12].

In [5] we studied the solutions of the vectérconstrained KP hierarchy (1.1) by
employing the bilinear method, we showed how to obtain their rational and soliton-like
solutions starting from the solutions of the KP hierarchy; these rational and soliton-like
solutions can be expressed by vertex operators. In [13], we studied the Wronskian structure
of the solutions of thek-constrained KP hierarchy, we proved that the Yajima—Oikawa
equation which is the first flow in the 2-constrained KP hierarchy has solutions in generalized
double Wronskian form, then based on this and some other facts we conjectured that the
generalk-constrained KP hierarchy also possess solutions in generalized double Wronskian
form, and we also conjectured the form of these solutions.

The purpose of the present paper is to construct the Wronskian-type solutions for the
vector k-constrained KP hierarchy (1.1), and as an aside to prove our conjecture given
in [13]. We shall employ the method presented in [14], where soliton-like solutions for
some integrable systems were constructed; these integrable systems are equivalent to the
first flows of the vectork-constrained KP hierarchy (1.1) with = 1-4. This method
arises from the algebraic-geometric method in soliton theory [15, 16]; it starts from the
construction of an analogue of the Baker—Akhiezer function for the KP hierarchy (the Baker—
Akhiezer 1-point function) by solving certain algebraic linear system and then imposes on the
constructed function some self-consistency conditions to obtain the solutions for the relevant
integrable systems. To construct the Wronskian-type solutions for the vectmstrained
KP hierarchy (1.1), we shall start from the construction of an analogue of the Baker—
Akhiezer (n + 1)-point function instead of starting from the construction of the analogue
of the Baker—Akhiezer 1-point function. The advantage of our construction lies in the fact
that we can obtain solutions of the whole hierarchy (1.1) in a straightforward way and can
express these solutions in a simple form by using some Wronskian-type determinants. The
motivation of our construction comes from the relation of the 1-constrained KP hierarchy
(i.e. the Ablowitz—Kaup—Newell-Segur (AKNS) hierarchy, see [3]) with the 2-component
KP hierarchy. This relation enables us to construct the solutions of the 1-constrained
KP hierarchy from the solutions of the 2-component KP hierarchy in a much more
straightforward way than to construct the solutions of the 1-constrained KP hierarchy by
imposing some constraints on solutions of the KP hierarchy, as was done in [5, 14].

In section 2 we explain our motivation by the construction of the double Wronskian
solutions for the first flow of the 1-constrained KP hierarchy, in section 3 we construct
the solutions for the vector-constrained KP hierarchy (1.1), in section 4 we construct the
tau-functions of the hierarchy (1.1) and show that they can be expressed in Wronskian-type
determinants and in section 5 we give some concluding remarks.

2. Double Wronskian solutions for the first flow of the 1-constrained KP hierarchy as
a motivation

In this section, we construct the double Wronskian solutions of the first flow of the
1-constrained KP hierarchy by using its relation with the 2-component KP hierarchy, and
thus give a hint of the construction of the Wronskian-type solutions for the general vector
k-constrained KP hierarchy. For the convenience of our further construction of Wronskian-
type solutions we will state this well known relation [17, 18] in the language of the method
given in [14].
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Let us assume that the functions” (x, y, 1), ¥ (x, v, ¢) have the following forms:

v a) = (83+Zu<’>(x A" ’)ewm (2.13)

5”(x,y,c)=(82+2u CR0le )e‘“m (2.1b)

where x = (x1,x2), ¥y = (y1, yz),Sj is the Kronecker-delta function and, ¢ are two
parameters, and = 1,2. These functions give rise an analogue of the Baker—Akhiezer
2-point function [15,16]. To specify the coefficiemé})’s, let us impose the following

linear conditions on the function”:
aryr” (x, y. ) + by (x, y.4) =0 (2.2)
I=12,.... M+ N i=12

whereq, by, A;, {; are some given constants. Let us define

UY = (u(ﬁ, .. u(lljz,l ugl) .. ugli,) (2.3)
and rewrite the linear conditions in (2,2) as
AU = F® i=12 (2.4)

where A and F’s are (M + N) x (M + N) and (M + N) x 1 matrices, respectively.
We assume that the matrix is not identically degenerate; since the determinant o$ a
smooth function ofx, y, we can assume in what follows thAtis non-degenerate in some
open domain andx, y) belongs to this domain.

Lemma 2.1 Denoteul) = ri1, uy) = riz, then the functiongs\”, v satisfy the following
system of linear equations:

Wﬁ)z =riy ,-(2) (2.59)
v, = ray” (2.50)
Vi = Vot — 21V 2.69)
Vi = Vi — 211200, 2.60)
Vi = Vi — 2rain ¥y (2.60)
P e
Proof From the form of " we see thatg, = v — ripy® has the form

(Zjle vy (x, y)/\‘f)em““"2A2 for j = 1 and has the forrijN:l vo; (x, y)k‘f)eyli““y2§2 for
Jj =2, and from (2.2) we see thé}’s satisfy

aip1(x, y, M) + bia(x,y,5) =0 1<I<KM+N. (2.7)
If we define
= (V11, ..., Vips V21, - .., Uan) ] (2.8)
then conditions in (2.7) can be written as
AV =0 (2.9)

and thus from the non-degeneracy/Afwe obtain thatp; = 0, which proves the identity
(2.5a); the identities (Bb) and (26a)—(2.6d) can be proved similarly. The lemma is
proved. O
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From the equalitiessy’) = rays”, vi) = rizy® and the form ofy”’s we can

easily see thatyy,, = r11.x, = rizrze. This fact and the compatibility conditions of the
linear equations in (2.5) and (2.6) lead to

Theorem 2.1 The functions;; satisfy the following system of equations

r12y, = M2y — 21211y (2.10m)
712y, = —T12x5x, + 2512722 x, (2.1M)
ra1y, = —r2iuy + 221y (2.1x)
21y, = 21y, — 22122.x, (2.1d)
rix, = F12r21 (2.1
722.x, = F12I21. (2.100)

The equations in (2.10) are the simpliest non-trivial flows of the 2-component KP hierarchy
[17,18]. If we introduce the following new variables:

fh=Xx1—Xx2 f1=x1+4x2 r=y1—Yy2 =y +y2 (2.11)

Then the equations in (2.10) lead to the Davey—Stewartson system [17], and if we require
thatr;;’s are independent af (i = 1, 2), then the equations in (2.10) lead to

dyr1z = 02112 + 2(r12ra0ri2 (2.12)
0,21 = —351’21 — 2(r1or21)ro1 (2.1%)
which is the first non-trivial flow in the 1-constrained KP hierarchy [3].

Lemma 2.2 Let us assume,; = ¢ for 1 </ < M + N in (2.2), thenr;;’s constructed
from (2.1)—(2.4) are independent gfand .

Proof. Sincei, = ¢, we can eliminate the factor@+3:72*f from the linear systems in
(2.2), and obtain linear systems which do not depend,@mdz,. Thus ther;;'s which are
constructed from (2.1)—(2.4) are independent;adind7,. We have proved the lemmal]

Let us now define the following two vectors,

_ 1 1422 _ 1 1,42
0= (al)\‘lMeztl)»lJrztz)»l’ o aM+N)"MKNe2[1)LM+N+2t2AM+N)T (21$)

¢ = (bay Ve iy N ey T (2.1%)
and we also denote= %tl, then from lemma 2.2 and the linear conditions in (2.2) we have

Theorem 2.2 The system of equations in (2.12) has the following double Wronskian
solution [19, 20]:

o
riz = L rp1= — (2.14)
T T
where
p = —detp, ¢, ..., 0Mp, ¢, 8,0, ..., 0" 2p) (2.15)
o =—detlg, d¢,..., 0" %0, ¢, 3, ..., p) (2.1%)

T = detlp, 3¢, ..., 3" 0, ¢, 8,¢,...,0"  1p). (2.1%)
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Remark 2.1 Under the conditiort; = (1 <[ < M + N), we know that the functions
¥ (x, y, e i j = 1,2, do not depend ofy and#,, so we can denote them as

¢i(t, 1), wheret = (11, ;). Then instead of condition (2.2) we have

a@” (t, 1) + by, 04) =0 i=121<I<M+N. (2.16)
We also define
T(t) = c()T(t) p(t) =c(t)p(t) G(t) =c(t)o(r) (2.17)

where c(t) = expl(t1/2) Y11 4 + (12/2 YN 22, Then the functionsp!”(t, 1),

#(1), p(t) and 5(¢) can be written as functions ofiet* 1 < | < M + N. We
2 . .
now replace the term&+2* in these functions by the term eXp[-, 7,A/] and denote

t = (t1,12,...,t,...). Then we can exprespsi’) in the following form (see theorem 4.1,
later):
(1) Tt —€e) 6( ) n (2) a(t—e()) "

(t, )= ——""exp Ztnk (th)=—— — 0 exp Ztnk

(2.18)

wheree (1) = (1/4, 1/2)2,1/333, ...). The above formulae show us that'(z, 1), i = 1, 2,

are the wavefunctions of the 1-constrained KP hierarchy defined in [5]; this fact gives us
a motivation for our further construction of the Wronskian-type solutions of the vector
k-constrained KP hierarchy.

3. Solutions for the vectork-constrained KP hierarchy (1.1)

Let us define the following functions:

o1, 0) = (a' + Zu%)x ) e (3.1a)
o (t.3) = 6 +Zu">(m kv (3.10)
2<j<m+1 1<i<m+1
where M;,1 < j < m + 1 are some positive integers, is a parameter =
(t1, 12, ..., Ly, ...), and
o0
g =Y nil. (3.2)
=1
We specify the coefficientsj(.iv)’s by imposing the following linear conditions ap'/fi):
m+1
Za, ot ) =0 1<I<M, 1<i<m+1 (3.3)

whereM = Z’”J’l M, andg;,’s are some given constants. If we denote

Q) — (@) @ 0 u® @) (@) T
U"Y = (uyq, .. U gy Ut s Uiy e ooy U y1s e e s ”(m+1)M<m+1)) (3.4)
then the linear conditions in (3.3) can be written as
AU = F® (3.5)
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where A and F)’s are M x M and M x 1 matrices, respectively. As in section 2 we
assume in what follows that the matrx is non-degenerate in a certain open domain and
we assume that belongs to this domain, then the linear systems of equations in (3.5)
uniquely determine the functions(”’s, which give an analogue of the Baker—Akhiezer
(m + 1)-point function (see remark 2.1).

We define now the following operators:

M,
P=1+) uf®)i (3.69)
v=1
L=PypP? (3.60)
whered = 3/9dt;. Let us also denote
qi(t) = uéil_)'_l)l ri(t) = u(lifl) 1<i<m 3.7)

Then we have

Lemma 3.1 The functionsy|”’s defined by (3.1)~(3.5) satisfy the following system of
linear equations:

m
1 1 1
Bip” + ) qup T =g (3.89)
n=1
1 1
o = g (3.80)
1 1
(p;,t: = Bnq); : (3.8c)
v+1 1
o =AY (3.8
1<v<m n>=?2

where B, = (L"), is the differential part of the micro-differential operatbf, A is a
(n — 1th order differential operator which has the form

n—1

A= 1 (3.9)
=0

and is uniquely defined by the following relations:
0AY =r,B,—(Bjr,)  n=>2 (3.10)
here B} is the operator adjoints t8,.
Proof. Let us denote
@; = Bepl” (1, 1) — Mo, ) + D quel e ). (3.11)
n=1
From the definition ofs\" (s, ) and P we havey!” = P&, so from (36b) we obtain
Lrg? = Mo, (3.12)
By using (3.12) and (3.1) we see that has the form

M
( Z w1, (t)A”)eé(“’\). (3.13)
v=1
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On the other hand, from (3.1) we see tldgtfor 2 < j < m + 1 has the form

M;
> wpat (3.14)
v=1

The linear conditions in (3.3) lead to
m+1

> a, @yt ) =0 1<I<M (3.15)
v=1

and this turns out to be a homogenous linear system for the unknoyyissdue to (3.13)
and (3.14). From the non-degeneracy of the coefficient matyiwe obtain thaib; = 0.

In a similar way, we can show that the equalities8¢3 and (38¢) hold and we can
show that there exist operators”’s of the form (3.9) such that (8¢) holds. To specify
the operatorsA{"’s, we use the compatibility conditions of.@) and (38d), which lead
to

AN =r,B, + 1y, (3.16)
We denoteB, by } " _,b,9", then substitute (3.9) into the equality (3.16) so we obtain

fr_qy = roby £ = b — 0 £ 0<i<n—-2 (3.1%)

Yy, = _B:rv (3170)
thus we have proved the lemma. O

Relations in (3.8) coincide with the Lax representation of the vefetoonstrained KP
hierarchy [5], from which we have the following theorem:

Theorem 3.1 The operatorL and the functionsg;(¢),r;(t),1 < i < m, which are
constructed in this section from (3.1)—(3.7) gave a solution of the vdctmnstrained
KP hierarchy (1.1).

Proof. From (38a)—(3.8¢c) and (3.12) we see thdt satisfies(1.1a) and (1.3), and (37b)
shows thatr; () satisfies(1.1c). To prove thaty;’s satisfy the equations iil.1b), let us
take the derivative of both sides (3.8a) with respect ta,,. By using(3.8¢c) we have

m m
1 1 1 1
0, (Beg) )+ D quad) + gy = M Byl (3.18)
n=1 n=1

where we assume that j < m + 1; then by using (3b) and equating the coefficients
of A% in both sides of (3.18) we obtaiy_1,, = B,gj-1,2 < j < m + 1. The theorem is
proved. O

In the next section, we show that the solutions of the velctoonstrained KP hierarchy
constructed in this section can be expressed in terms of tau-functions which are some
Wronskian-type determinants.

4. Wronskian-type tau-functions of the vectork-constrained KP hierarchy (1.1)

Let us keep in mind the notations of section 3, and define
_ 1 _ 1 _ 1

$1 = (ah] Mig36(t2a) azih; Migoeia) aMl)\MMle—zsu,AM))T (4.1a)
—kM; _1 —kM; _1 —kM; _1

¢j = (a]_j)\,l ‘e Zé(t’kl), azj)\z ‘e ZE(Z')\Z), ceey an)‘M ‘e Zg(l’)LM))T (4:|b)

2<j<m+1
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We denotes = t,/2 as in section 2, and define the following two matrices:
R = (¢1. 01, ... 0} P1, b2, 052, ..., 0L Do, . s,

FPmit, ..., FMm= D 1) (4.29)
Q= (¢1, 051, ... M 21, ¢, 3, ..., XM Vhy L s,

Pty ..., EM D 1. (4.20)
We also define

7(t) = e i detR (ng + 1)) (4.37)

p;(t) = (=1~ MitkMia-D s Y 56 deR(n; + 1)) (4.%0)

oj(t) = (_1)”.f—M1+ka+1+1ez pIEI A’)del(Q(n] 1, a"M/+1¢]+1) (4.%)

i+1
1<j<m ni=>y_ M, 0<i<m

whereR(n; +1) is a matrix obtained from the matriR by removing its(n; + 1)th column,
andQ(n; — kM’“¢,+1) is a matrix obtained fron® by adding to the matriQ) the column

kM/+l¢]+1 behmd its(n; — Dth column gk~ 1)¢]+1_

Theorem 4.1 The functionsy; (), r;(t) fori = 1,2,...,mande\ for j = 1,2, ..., m+1
have the following expression;

_ a0 e
qi (1) ) ri(t) = ) (4.4)
o = g (459
o) 0j-1(t =€) 4a
(t, 1) = e e (4.50)
1<i<m 2<j<m+1

wheree(r) = (1/x, 1/2x2,3/A3,...).

Proof. The relations in (4.4) are evident from (3.1)—(3.7) and the definitions given in
(4.1)—(4.3). The relations in (4.5) can be proved by using the fact that [18]

1 : _ 1 1 . _ 1
ezS(l,lz)asj (all)L[ Mlei‘?(h)\z)) _ A‘le’ZS(”’\’)aﬁl(a;lkl Mle*ZS(l-,)»z))
1 : _ 1
— e’zf(l—e()‘)»)‘l)asl (anh; Mleﬁ(t—é()»).?»/))‘ (4.6)
The theorem is proved. |

From (4.4), (4.5) and [5] we see thal?), p;(¢),0:(t),i = 1,2,...,m, satisfy the
bilinear equations of the vect@rconstrained KP hierarchy given in [5], and thus they are
the tau-functions of the vectdrconstrained KP hierarchy. From (4.5) we also see that the
operatorP defined in (36a) can be expressed by the functiotr) as follows:

Z Pu(=0)T (1) P @.7)
- (1)
where p,(t)'s are the Schur polynomials defined by

geh — Z po(DA” (4.8)

v=0
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andd = (3, 29, 29, ...). So the operatoL is also determined by the function(),
this fact together with (4.4) implies that the tau-functiargs), p; (¢), 0;(¢),i = 1,2, ..., m,
characterize a solution of the vectbiconstrained KP hierarchy (1.1).

Whenm = 1, the tau-functions have the following form:

T(t) = c1(t)detipn, d¢n, .., 3L, ¢, 3o, ..., 3 M2V (4.9)
p1(t) = co(t)detpr, 3y, - .., M1, g, 3o, ..., 3 M2 gpy) (4.%)
o1(t) = ca(t)det(gn, dspr, . .., M 2p1, da, 3o, ..., 85M2¢py) (4.%)

wherecy (1) = exp[% ZzﬂilE(t, M. ca(t) = (=D EDMey (1), e3() = (D) *FDMtley (1),

From the bilinear equations of theconstrained KP hierarchy [5] we see thatrift)
andp1(t) andoy(¢) are its tau-functions, then we can define another set of tau-functions for
the k-constrained KP hierarchy as follows:

T(t) = e17(—1) p1(t) = e201(—1) 01 = &2p1(—1) (4.10)

whereg; = £1. Itis then not hard to see that the solution of theonstrained KP hierarchy
obtained from the tau-functions in (4.9) is equivalent to the solution constructed from the
tau-functions which were given in the conjecture of [13], thus we also proved this conjecture.

5. Concluding remarks

The fact that the 1-constrained KP hierarchy can be reduced from the 2-component KP
hierarchy enables us to construct the double Wronskian solutions of the 1-constrained
KP hierarchy starting from an analogue of the Baker—Akhiezer 2-point functions. This
construction in turn motivated us to construct the Wronskian-type solutions of the vector
k-constrained KP hierarchy starting from an analogue of the Baker—Akhigzierl)-point
function. We remark here that the reduction from the 2-component KP hierarchy to the
1-constrained KP hierarchy is much more straightforward than the reduction from the KP
hierarchy to the 1-constrained KP hierarchy; it only needs us to require that the dynamical
variables of the 2-component KP hierarchy do not depend on some independent variables,
which is similar to the reduction from the KP hierarchy to the Korteweg—de Vries (KdV)
hierarchy. We finally remark that our construction of the Wronskian-type solutions of the
vector k-constrained KP hierarchy suggests that there may exist a certain analogue of the
(2+ 1)-dimensional(m + 1)-component KP hierarchy from which the vecteconstrained

KP hierarchy can be straightforwardly reduced, and it also suggests a relatively convenient
way to construct the algebraic—geometric solutions of the véctamstrained KP hierarchy

by using a certain analogue of the Baker—Akhieger+ 1)-point function. These subjects

will be discussed in further publications.
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